Python Pandas

Pandas Array to DataFrame

Numpy arrays in Python are used for storing and manipulating data. In Python, different operations such as adding, removing, appending, and others are performed on Numpy using various inbuilt functions. However, sometimes while working with the Numpy array, it is required to convert it into Pandas DataFrame for various data analysis operations. Python provides several methods to convert an array to DataFrame.

This write-up will give you a detailed guide on converting an array to Pandas DataFrame using multiple examples.

How to Convert Array to Python Pandas DataFrame?

To create the Pandas DataFrame by accepting the specified array, the below methods are used in Python:

Method 1: Convert Array to Pandas DataFrame Using “pd.DataFrame()” Function

The “pd.DataFrame()” function of the “Pandas” module is used to create the DataFrame in Python. This method can accept the array as an argument and convert/transform it into Pandas DataFrame. For further understanding, look at the below example code:

Example 1: Convert Array to Pandas DataFrame

The following example is utilized to create the DataFrame by taking the array:

import numpy, pandas
arr1 = numpy.array([[32,42,12],[32,12,18],[82,52,58]])
print(arr1, '\n')
print(pandas.DataFrame(arr1, columns = ['Team_1','Team_2','Team_3']))

 

In the above code:

  • The “numpy” and “pandas” module is imported.
  • The “numpy.array()” method takes the data as an argument and creates the numpy array.
  • The “pandas.DataFrame()” function accepts the “array” and “columns” names as an argument to create the DataFrame with a specified column.

Output

The specified array has been transformed/converted into DataFrame.

Example 2: Convert Array to Pandas DataFrame by Adding Custom Index Value

Let’s overview the below code:

import numpy, pandas
arr1 = numpy.array([[32,42,12],[32,12,18],[82,52,58]])
print(arr1, '\n')
print(pandas.DataFrame(arr1, columns = ['Team_1','Team_2','Team_3'], index=['A', 'B', 'C']))

 

In the above code:

  • The “pandas.DataFrame()” method takes the array, column, and index parameters as an argument to create the DataFrame with a custom index.

Output

The DataFrame with a custom index has been created.

Example 3: Convert Mixed Array to DataFrame of Pandas

The following code converts the Numpy array containing mixed data type value to Pandas DataFrame:

import numpy, pandas
arr1 = numpy.array([['Joseph',21,5.2],['Anna',22,4.8],['Lily',19,5.8]])
print(arr1, '\n')
print(pandas.DataFrame(arr1, columns = ['Name','Age','Height']))

 

In this code:

  • The “numpy.array()” method creates a mixed array and assigns the value to the “arr1” variable.
  • The “pandas.DataFrame()” method takes the array and column value as an argument and gets the Pandas DataFrame.

Output

Method 2: Convert Array to Pandas DataFrame Using “from_records()” Function

The “from_records()” function can also be utilized to convert/transform the array to Pandas DataFrame. Here is an example:

import numpy, pandas
arr1 = numpy.array([[32,42,12],[32,12,18],[82,52,58]])
print(arr1, '\n')
print(pandas.DataFrame.from_records(arr1, columns = ['Team_1','Team_2','Team_3']))

 

In this code:

  • The “pandas.DataFrame.from_records()” function takes the “array” as an argument and retrieves/gets the DataFrame.

Output

The data frame has been successfully created from the given array.

Conclusion

In Python, the “pandas.DataFrame()” and “from_records()” methods are utilized to convert/transform the array to Pandas DataFrame. The “pd.DataFrame()” method can also be used to add columns and custom indexes while converting the array to DataFrame. This write-up delivered a comprehensive guide on converting a numpy array to Pandas DataFrame using numerous examples.

About the author

Haroon Javed

Hi, I'm Haroon. I am an electronics engineer and a technical content writer. I am a tech geek who loves to help people to the best of my knowledge.